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ABSTRACT: The canonical method of time dependent holonomic constrained systems is discussed using the mathematical 
computational technique. The equations of motion are obtained as total differential equations in many variables, by applying 
the Euler-Lagrange equations  subject to holonomic constraints; in this case the corresponding coordinates become arbitrary 
function of time. To explain the application of our formalism: the motion of a disk of mass m and radius R that is rolling down 
an inclined plane without slipping is discussed. The solution of the example is found in detail to be in exact agreement with the 
Euler-Lagrange equations  when the time parameter (µ) is zero. 
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INTRODUCTION 
The classical theory of mechanical systems with co
nstraints was  developed at the turn of the last century. In this 
theory the constraints are in the form 

0),,( tqqF
iiK   which is dependent on the generalized 

coordinates 
i

q `s    and the generalized velocities 
i

q `s [1]. 
Constraints are restrictions that limit the motion of the 
particles of a system. The forces necessary to constrain the 
motion are said to be forces of constraint [2].  
The constraints expressible as algebraic equations relating the 
coordinates of the particles and the time variable are called 
holonomic [3]. Holonomic constraints are relationships 
between the coordinates of the form [4, 5]: 
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In general the constraints can be time dependent and our 
notation above allow for this, holonomic constraints can be 
solved in terms of n generalized coordinates qi ,where    i=1, 
2,..., n. 
We find the Euler-Lagrange equations  for the systems in 
terms of the generalized coordinates. Because of constraints 
we need differential algebraic equations for modeling, their 
numerical analysis is available by a number of software 
packages. The equations of motion become standard ordinary 
differential equations, which could be integrated by any 
standard method. The simplest approach to solve a 
differential algebraic equation consists of integrating of 
equation [6]. This paper presents a computer-based method 
for formulation and efficient solution of the constrained 
differential equations of motion for mechanical systems, 
using a mathematica program which is a symbolic 
mathematical computation program, sometimes called a 
computer algebra program used in many scientific fields.  
The holonomic constraint equations and differential equations 
of motion are written in terms of a generalized coordinates, to 
facilitate the general formulation of constraints and forcing 
functions. The main aim of this article is to show that various 
physically motivated formulations for the equations of 
motion of a time dependent holonomic constrained system 
may be understood as stabilization techniques. 
This paper is organized as follows. Firstly, the Euler-
Lagrange equations formulation of time dependent holonomic 
constrained systems is discussed. Then, an illustrative 

example is discussed in detail. Finally, some concluding 
remarks are given. 

EULER-LAGRANGE EQUATION FORMULATION OF 
TIME DEPENDENT CONSTRAINED SYSTEMS   
Many mechanical systems are subject to conservative forces 
which mean VF


    that can be derived from a 

potential V (q) [7].  It is well known that the equations of 
motion of such systems take the form of natural Euler-
Lagrange equations  [8]: 

                                                                                                        

                    (1) 

 
The traditional starting point 
for the modeling of a 
mechanical system is 

Lagrangian function, not directly the equations of motion. Let 
qi be the generalized coordinates in N- dimensional 
configuration space, we restrict our presentation to holonomic 
systems as explicit time dependence can always be treated by 
considering the time as additional coordinate in an extending 
configuration space. The Lagrangian is then a real- valued 
function ),,( tqqL  and the dynamic of a mechanical system 
described by it is given by the well known Euler-Lagrange 
equation. For natural mechanical system, the Lagrangian is of 
the form: 
 ),( qqL 
 )()( qVqT    where T stands for its kinetic 

energy and V stands for its potential energy [9]. The equation 
of motion for the harmonic oscillator for example is of this 
form [10]: 

kqqm  where 
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But not all mechanical systems have an Euler-Lagrangian 
description, if the force F


 is not a conservative force the 

equations of motion for holonomic constraints become of the 
general form [9]: 
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λk are the Lagrange multipliers and they simply represent the 
forces of constraints. There is the same number of λk as the 
number of equations of constraints. 
In equation (2) the LHS is the equation of motion for the 
unconstrained system and the RHS is the manifestation of the 
constraint forces in the system. This equation is more general 
than the natural Euler-Lagrange equation, because it still 
exhibits interesting property; one can conclude that the 
energy changes when the time passes. The systems which 
behave like this form are called time dependent systems and 
the Lagrangian of these systems is [11]: 

t
etqqLtqqL

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                                                (3)                                                      

where 


L : is called natural Lagrangian. 
µ: is defined as time parameter, µ˃0. 
 
Taking the first partial derivative of the Lagrangian 
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 The total time derivative of
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Also we differentiate the Lagrangian 
t
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with respect to the generalized coordinate q  
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Finally, we differentiate our constraint function with respect 
to the generalized coordinate
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Now, we find the Euler-Lagrange equations to obtain the 

equations of motion for the system in terms of the 

coordinates q  
and q , by substituting equations (4-7) into 

equation (2). 
The generalized momentum is [11]: 
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ILLUSTRATIVE EXAMPLE 
A disc Rolling Down an Inclined Plane 
To illustrate our work let us discuss the example that 
describes the motion of a disk of mass m and radius R that is 
rolling down an inclined plane without slipping, the 
Lagrangian is given by [12]: 
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1                (9)                                                                

Where g is the acceleration due to the gravity, and α is the 
angle of inclination. The equation of holonomic constraint 
that describes the relation between the coordinates (y and θ) 
is 

0),(   Ryyf                            
         ( 1 0 )

 

The Euler-Lagrange equation for y coordinate is written as  
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T h e n ,  
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                        ( 1 1 )

                                                                       

Using the constraint  

  RyRyRy  ,,                                            ( 12)                                                                                  

Equation (11) can be written as 
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                 ( 1 3 )                                                                   

 multiplying equation (13) by R, we get: 
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And the equation of motion of θ coordinate
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Adding equation (14) to equation (15), we obtain: 
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  mRgmRmR                                         (16)                                                                 

The computational solution of equation (16) takes the 
following form  

                

  (17)   

   The output solution for this equation is 
  

     (18)                          

The first derivative of θ using equation (18)     

is   
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Taking the second derivative of θ also 
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Inserting the value of the first derivative and the second 
derivative of θ into equation (13) the value of λ is  
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And the accelerations 
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In the limit
 ,0  we have 
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And the disk accelerations are 
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These results are consistent with those results that we have 
obtained from Euler-Lagrange equations for natural 
Lagrangian. 
Where the conjugate momenta are: 
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CONCLUSION  
In this paper the non-natural Lagrangian with time 
dependent holonomic constraints is discussed. The starting 
point is the natural Euler-Lagrange equation  

                                 

 We also saw that when some of the coordinates are 
dependent on each other and also time dependent which, 
appears using the parameter ,

t
e
  the constraints can be 

included in the Euler-Lagrange equation in the following 
form, 
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Euler-Lagrange equations formulation of time dependent 
holonomic constrained systems are investigated, the 
Lagrange multipliers and the solutions of the equations of 
motion are found for these systems using a mathematica 
program; we showed that using the example of a disk of 
mass m and radius R that is rolling down an inclined plane, 
the solution is found to be in exact agreement with Euler-
Lagrange equation in the limit

 .0
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